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PURPOSE. A striking characteristic of the human meibomian
gland is its rich sensory, sympathetic, and parasympathetic
innervation, yet the functional relevance of these nerve fibers
remains unknown. Acting on the hypothesis that neurotrans-
mitters are released in the vicinity of the gland, act on glandular
receptors, and influence the production, secretion, and/or de-
livery of meibomian gland secretions to the ocular surface, the
goal in this study was to begin to determine whether neu-
rotransmitters influence the meibomian gland.

METHODS. Immortalized human meibomian gland epithelial
(SLHMG) cells were examined for the presence of vasoactive
intestinal peptide (VIP) and muscarinic acetylcholine (mACh)
receptor transcripts and proteins. Cells were also exposed to
VIP, carbachol, forskolin, and/or 3-isobutyl-1-methylxanthine
(IBMX) to determine whether these agents, alone or in combi-
nation, modulate the adenylyl cyclase pathway, the accumula-
tion of intracellular free calcium ([Ca2�]i), or cell proliferation.

RESULTS. Results demonstrate that SLHMG cells transcribe and
translate VIP and mACh receptors; VIP, with either IBMX or
forskolin, activates the adenylyl cyclase pathway, and the effect
of VIP and forskolin together is synergistic; both VIP and
carbachol increase intracellular [Ca2�] in SLHMG cells; and VIP
with forskolin stimulates SLHMG cell proliferation.

CONCLUSIONS. This study shows that parasympathetic neu-
rotransmitters and their agonists influence the function of
human meibomian gland epithelial cells. It remains to be de-
termined whether this action alters the production, secretion,
and/or delivery of meibum to the ocular surface. (Invest Oph-
thalmol Vis Sci. 2011;52:8543–8548) DOI:10.1167/iovs.11-
8113

Optimal meibomian gland function is essential for protect-
ing the health and integrity of the ocular surface.1–4 This

gland, through its synthesis and secretion of lipids, promotes
stability and prevents evaporation of the tear film.1–4 Con-
versely, meibomian gland dysfunction (MGD), and the result-
ing lipid insufficiency, destabilizes the tear film, heightens its
evaporation and osmolarity,3–9 and is very likely the most
frequent cause of evaporative dry eye disease throughout the
world.4,10–14

One of the most striking characteristics of the meibomian
gland is its rich sensory, sympathetic, and parasympathetic
innervation.15 Indeed, this tissue is the only human sebaceous

gland that has such innervation, with adjacent nerve fibers
reactive for acetylcholinesterase, substance P, vasoactive intes-
tinal peptide (VIP), dopamine �-hydroxylase, nitric oxide syn-
thase, tyrosine hydroxylase, somatostatin, neuropeptide Y
(NPY), and calcitonin gene-related peptide (CGRP).16–32 Fur-
thermore, as recently reported,4,33 the mouse meibomian
gland contains mRNAs of receptors for serotonin, adrenergic,
CGRP, cholinergic, dopamine, �-aminobutyric acid, glutamate,
NPY, neurotensin, and somatostatin. It is quite possible that
these nerves and, if translated, neurotransmitter receptors play
a significant role in the regulation of the meibomian gland.
However, this possibility is completely speculative. It is un-
known whether neurotransmitters are released into the vicin-
ity of the meibomian gland, act on glandular receptors, or
induce a physiological effect.

We hypothesize that neurotransmitters are released in the
vicinity of the gland; act on glandular receptors; and influence
the production, secretion, and/or delivery of meibomian gland
secretions to the ocular surface. If correct, this would indicate
an important role for the nervous system in maintaining the
tear film lipid layer and, thus, the health of the ocular surface.
Our goal in this study was to begin to determine whether
neurotransmitters do influence the meibomian gland. Toward
that end, we focused on the role of VIPergic and cholinergic
neurotransmitters, because innervation of the meibomian
gland appears to be largely parasympathetic in origin.18,19,30

We investigated whether VIPergic and cholinergic receptors
are transcribed and translated in human meibomian gland ep-
ithelial cells and whether corresponding ligands induce cellu-
lar physiological responses.

MATERIALS AND METHODS

Cell Culture Procedures

Immortalized human meibomian gland epithelial (SLHMG) cells, re-
cently generated in our laboratory,34 were cultured in tissue-culture-
treated flasks (Corning Inc., Corning, NY) in keratinocyte serum-free
medium (KSFM; Invitrogen, Carlsbad, CA) supplemented with 50
�g/mL bovine pituitary extract and 5 �g/mL epithelial growth factor.
Cells were subcultured for propagation and used for experimentation
at 90% confluence.

Molecular Biological Techniques

To determine whether human meibomian gland epithelial cells express
genes for VIP and cholinergic receptors, we examined total RNA
samples prepared from human primary and immortalized meibomian
gland epithelial cells, as well as from human meibomian glands, for the
presence of corresponding receptor mRNAs. The generation of these
cellular and tissue samples, their processing by Asuragen (Austin, TX;
with HumanHT-12 v3 Expression BeadChips; Illumina, Inc., San Diego,
CA), and their analyses (BeadStudio; Illumina, Inc.) have been de-
scribed.34
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SDS-PAGE and Immunoblots

To examine whether SLHMG cells translate transcripts for VIP and
cholinergic receptors, cultured cells were trypsinized, centrifuged, and
resuspended in 2X reducing sample buffer (BioRad, Hercules, CA).
Samples were heated at 95°C for 10 minutes, separated by SDS-PAGE
on 10% Tris/glycine precast gels (Invitrogen) and transferred to nitro-
cellulose. Membranes for VIP receptor blots were blocked with 3%
bovine serum albumin (BSA) in phosphate buffered saline (PBS) con-
taining 0.01% Tween-20, followed by incubation with a mouse mono-
clonal antibody specific for VIP receptor 1 (VPAC1; GenWay Biotech,
San Diego, CA) or VIP receptor 2 (VPAC2; Millipore Corp., Billerica,
MA) and HRP-conjugated, Fc-specific goat anti-mouse IgG (Sigma-Al-
drich, St. Louis, MO). Membranes for muscarinic acetylcholine (mACh)
receptor blots were blocked with 5% nonfat dry milk in PBS with
0.01% Tween-20, followed by incubation with rabbit polyclonal anti-
mAChR M2 or M3 antibody (GenWay Biotech) and HRP-conjugated
goat anti-rabbit IgG (Sigma-Aldrich). Proteins were visualized with
chemiluminescent detection reagents (West Pico; Pierce Biotechnol-
ogy, Rockford, IL). Human heart extract (Imgenex, San Diego, CA) and
A431 human skin epidermal cell lysate (Santa Cruz Biotechnology,
Santa Cruz, CA) were processed for immunoblot analyses as positive
controls for the mACh and VIP receptors, respectively.

cAMP ELISA

To assess the ability of cells to produce adenosine 3�,5�-cyclic mono-
phosphate (cAMP) in response to secretagogues, SLHMG cells were
plated in 96-well tissue-culture-treated plates at a density of 3 � 104

cells per well. One day later, cells were treated for varying time
intervals, at concentrations determined by dose-response studies, with
forskolin (Sigma-Aldrich), 3-isobutyl-1-methylxanthine (IBMX; Sigma-
Aldrich), carbachol (CCh; EMD Chemical, Gibbstown, NJ), and/or VIP
(EMD Chemical) in fresh KSFM. Cells were then washed and lysed;
cAMP levels in this extract were measured using a nonacetylation
protocol and a cAMP enzyme-linked immunoassay, according to the
manufacturer’s recommendations (GE Health Care, Buckinghamshire,
United Kingdom). A standard curve in duplicate was run in each assay.

Intracellular Free Calcium Quantification

To monitor intracellular calcium ([Ca2�]i), SLHMG cells were cultured
in 35-mm glass-bottom dishes (MatTek Corp., Ashland, MA) at a sparse
density. One day later, plates were washed with Kreb’s Ringer buffer
with HEPES (KRBH: 119 mM NaCl, 4.7 mM KCl, 2.5 mM CaCl2, 1.2 mM
MgCl2, 1.2 mM KH2PO4, 2 mM glucose, 10 mM HEPES; pH 7.4) and
incubated in KRBH supplemented with 250 �M sulfinpyrazone (Sigma-
Aldrich), 1.2 mM pluronic F127 (Sigma-Aldrich), and 6 �M Fura-2AM
(Invitrogen) for 1 hour at 37°C. Cells were then washed and exposed
to KRBH supplemented with 250 �M sulfinpyrazone for an additional
45 minutes to allow for ester conversion. Intracellular Ca2� measure-
ments were obtained using a ratio imaging system (InCyt IM2; Intra-
cellular Imaging, Inc., Cincinnati, OH). Excitation wavelengths were
340 and 380 nm and emission wavelength was 505 nm. At least 8
individual cells were selected in each field of view and experiments
were repeated a minimum of 3 times. Data were collected in real-time
as cells were treated with parasympathetic agonists and are presented
as [Ca2�]i over time for each cell monitored. Optimal concentrations of
Fura-2AM and agonists for these studies were determined by conduct-
ing dose-response experiments.

Cell Proliferation

To assess the capacity of secretagogues to induce SLHMG cell prolif-
eration, cells were plated at a subconfluent density of 3 � 104 cells per
well in 24-well plates. Cells were then cultured in KSFM containing
10�6 M forskolin, 10�8 M VIP, or 10�3 M IBMX, either alone or in
combination, for up to 7 days at 37°C. When indicated, cells were
trypsinized, resuspended, and counted using a hemocytometer. All
proliferation experiments were repeated in triplicate.

Statistical Analysis
Analysis of variance, post-hoc analysis, and Student’s t-test were per-
formed using statistical software (Prism 5; GraphPad Software, Inc., La
Jolla, CA).

RESULTS

SLHMG Cells Express VIP and
Cholinergic Receptors

To determine whether human meibomian gland epithelial cells
express VIP and mACh receptor transcripts and proteins, we
processed samples for molecular biological and immunoblot
procedures as outlined in Materials and Methods.

Our results demonstrate that human primary and immortal-
ized meibomian gland epithelial cells, as well as human mei-
bomian glands, contain mRNAs for VPAC1, mACh receptor M2
(M2R) and a species (LOC730413) predicted to be similar to
mACh receptor M3 (M3R) (data not shown). In addition, we
were able to detect very low levels of VPAC2 mRNA in some of
these cellular and glandular samples (data not shown). We
were unable to detect mRNA transcripts for mACh receptors
M1, M4, or M5 in these samples.

Our immunoblot data show that these neurotransmitter re-
ceptor transcripts are translated. As demonstrated in Figure 1A,
monoclonal antibodies specific to VPAC1 or VPAC2 react pre-
dominantly with a 57 kDa protein species in SLHMG cell
lysates. Less abundant and smaller isoforms are also present
and may represent deglycosylated or degraded forms of VPAC
receptors. Some differences in molecular weights and degra-
dation patterns were found for VPAC1 and VPAC2 immunore-
active bands in human epidermal epithelial cell (A431) lysates,
which served as positive control (Fig. 1A).

Both M2R and M3R proteins are also expressed by SLHMG
cells (Fig. 1B). A polyclonal M2R antibody reacted with a 45
kDa protein in the SLHMG cell lysate and with a slightly larger
peptide (50 kDa) in human heart extract lysate (Fig. 1B, left).
In addition, a polyclonal antibody specific for M3R identified a
50 kDa protein in both SLHMG cell and human heart tissue
extract lysates (Fig. 1B, right). Similar results were obtained
with other antibodies specific for these receptors (data not
shown).

Activation of the Adenylyl Cyclase Pathway in
SLHMG Cells

Parasympathetic neurotransmitters often act by binding to spe-
cific transmembrane receptors, altering the activity of the ad-

FIGURE 1. SLHMG cells express neuropeptide receptors. Cells were
lysed in reducing sample buffer, boiled, and separated on a 10%
tris/glycine gel, followed by transfer to nitrocellulose. Immunoblots for
four neuropeptide receptors, each representative of 3 to 5 individual
blots, are shown. (A) Representative immunoblots for high-affinity VIP
receptors, VPAC1 and VPAC2. A431 human skin epidermal cell line
serves as positive control. (B) Representative immunoblots for mACh
receptor proteins M2R and M3R. Human heart extract lysate (HHE)
serves as positive control.
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enylyl cyclase signaling pathway, and causing changes in the
generation of cAMP.35,36 To help determine whether such a
mechanism may be operative in SLHMG cells, we first con-
ducted studies to optimize the detection of cAMP levels in
these cells.

Our results demonstrate that forskolin (10�4 M), a secreta-
gogue known to activate adenylyl cyclase in other cell types,37

induces a significant, time- and dose-dependent increase in
cAMP levels in SLHMG cells (Fig. 2). This forskolin effect is
significantly amplified in the presence of IBMX (10�3 M;
Figs. 2, 3), a phosphodiesterase 4 inhibitor.38 By contrast,
IBMX treatment alone has a minimal impact on cellular cAMP
content (Figs. 2, 3). Subsequent cAMP experiments were per-
formed with 100-fold less forskolin (10�6 M) to remain within
the dynamic range of the assay system.

Given this background, we analyzed the influence of VIP
and CCh, in the presence or absence of IBMX or forskolin, on
cAMP levels in SLHMG cells. As shown in Figure 3, VIP, in
combination with either IBMX or forskolin, caused a significant
elevation in intracellular cAMP content. This effect was most
pronounced with VIP and forskolin together, which led to a
synergistic rise in cAMP concentrations that was 10-fold higher
than expected (i.e., based on simple additivity) (Fig. 3). By
contrast, exposure of SLHMG cells to VIP alone, or to CCh with
or without IBMX or forskolin, did not generate a detectable
change in cAMP levels.

Effect of Neurotransmitters on Intracellular Free
Calcium Concentration

Parasympathetic neurotransmitters may also act on cells by
associating with G-protein-coupled receptors that activate
other second messengers, such as intracellular Ca2�.35,36 To
test this pathway, SLHMG cells were incubated with the cal-
cium indicator Fura-2 and imaged during treatment with either
VIP or CCh.

As demonstrated in Figure 4A, cellular exposure to VIP
(10�6 M) prompted a rapid increase in [Ca2�]i, followed by a
plateau phase lasting several minutes. Of � 75 cells monitored

during a series of VIP treatments, 98% responded with in-
creased [Ca2�]i within minutes (Fig. 4A and data not shown).

Similarly, CCh (10�3 M) induced an increased [Ca2�]i in
SLHMG cells (Fig. 4B). This response, which occurred in ap-
proximately 10% to 15% of cells, was far more robust (e.g., up
to eightfold greater) than that observed in VIP-treated cells.

Impact of VIP Treatment on SLHMG
Cell Proliferation

To examine whether a parasympathetic neurotransmitter
might stimulate the proliferation of SLHMG cells, we exposed
cells to VIP (10�8 M), forskolin (10�6 M), or IBMX (10�3 M),
alone or in combination, for up to 7 days. Cells were then
harvested and counted.

Our results show that VIP in combination with forskolin or
IBMX significantly increased SLHMG cell proliferation, com-
pared with untreated controls (Fig. 5). This effect was dupli-
cated by treatment with forskolin and IBMX (Fig. 5), as well as
with IBMX alone (data not shown). In contrast, VIP or forskolin
treatment alone did not result in consistent changes in cell
number. There was no significant effect of vehicle on cell
proliferation, relative to untreated controls.

DISCUSSION

The present study indicates that the parasympathetic nervous
system may exert a significant influence on the meibomian
gland. Our findings show that SLHMG cells transcribe and
translate VIP and mACh receptors and that corresponding
receptor ligands activate the adenylyl cyclase pathway, in-
crease intracellular [Ca2�], and/or stimulate cell proliferation.
These results support our hypothesis that neurotransmitters
released in the vicinity of the meibomian gland act on glandular
receptors and induce changes in epithelial cell physiology.

Our research identified the presence of VPAC1, VPAC2,
M2R, and M3R transcripts and proteins in SLHMG cells. These
results are consistent with the findings of other investigators,

FIGURE 2. Forskolin activates adenylyl cyclase in SLHMG cells. Cells
were treated with forskolin (Forsk; 10�4 M), alone or in combination
with IBMX (10�3 M), for 5, 15, or 30 minutes. Cells treated with buffer
or IBMX alone were incubated 30 minutes. Intracellular cAMP was
measured by enzyme-linked immunoassay. Results are representative
of three independent experiments. ***P � 0.001.

FIGURE 3. VIP, but not CCh, promotes cAMP accumulation in combi-
nation with IBMX or forskolin. Cells were untreated or incubated with
buffer, forskolin (10�6 M, unless otherwise noted), IBMX (10�3 M), VIP
(10�8 M), and CCh (10�4 M), alone or in combinations, for 10 minutes.
The experimental times and doses used in this study were predeter-
mined in preliminary investigations. Cells were then lysed and analyzed
for intracellular cAMP levels. *P � 0.05, compared with either agent
alone; ***P � 0.001.
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who reported expression, by meibomian gland epithelial cells,
of VIP receptor 1 and all five mACh receptor subtypes in
mouse39 as well as M3R in monkey.40 The molecular weights of
these SLHMG receptors are analogous (e.g., to VPAC1 in
mouse,39 and M2R in human bladder41), or different from (e.g.,
M3R in mouse39), those found in other studies. The variability
reported in the literature, as well as differences in apparent
molecular weights observed in our own immunoblots, may
relate to differences in posttranslational processing, protein
degradation, or antibody selectivity between species and tissue
types.39

Of particular importance, our results demonstrate that these
VIP and mACh receptors are functional. Cellular exposure to
VIP in combination with either IBMX or forskolin led to a
marked synergistic rise in cAMP concentrations. Such synergis-
tic activation has been found in a variety of tissues42–46 and
was most pronounced with combined VIP and forskolin treat-
ment. Researchers have proposed that this greater-than-addi-
tive effect may be due to activation of multiple adenylyl cyclase
isoforms, each interacting with a subset of G proteins and/or
intermediate activators.43 In contrast to these combinatorial
actions, VIP alone did not induce a detectable increase in cAMP
levels in SLHMG cells. This lack of a measurable response,

which does occur in other cell types,44,46–48 may reflect a
rapid breakdown of cAMP within minutes after stimulation.

Both VIP and CCh elicited a significant increase in free
[Ca2�]i in SLHMG cells. This second messenger reaction to
VIPergic and cholinergic input has also been observed in other
cells.35,36 Moreover, the ability of VIP to activate both calcium
and adenylyl cyclase signaling pathways appears to be a wide-
spread characteristic of this neuropeptide.48–50 Investigators
have speculated that this capacity to trigger different second
messenger systems may be the result of VIP receptor coupling
to multiple G-protein isoforms.49 In addition to mACh receptor
activation, it is possible that nicotinic acetylcholine receptors
may also play a role in the response to CCh observed in SLHMG
cells.

An intriguing observation was that VIP combined with for-
skolin or IBMX stimulated SLHMG cell proliferation. This find-
ing suggests that VIP may play a role in the generation of acinar
epithelial cells in the meibomian gland. This tissue secretes by
a holocrine mechanism, which involves disintegration of the
whole cell and release of the cell components into the con-
necting ductile.4,51 This process requires that the basal layer of
epithelial cells in the periphery of the acinus serves as a
progenitor cell population, which constantly gives rise to new
epithelial cells.4,52 Given that numerous nerve fibers near mei-

FIGURE 4. VIP and CCh promote intracellular free calcium accumula-
tion in SLHMG cells. Cells were loaded with Fura-2 (6 � 10�6 M)
before stimulation with VIP (10�6 M) or CCh (10�3 M) and imaged in
real time. Preliminary dose-response experiments were used to deter-
mine the treatment concentrations used for Fura-2 and each agonist.
Individual traces represent a single cell and graphs shown are repre-
sentative of three to five plates imaged independently. The y axes have
been extended below zero to clearly illustrate the presence or absence
of nonresponsive cells. (A) Cells treated with VIP at time indicated by
arrow. (B) Cells treated with CCh at time indicated by arrow.

FIGURE 5. Treatment with VIP in combination with forskolin or IBMX
promotes SLHMG proliferation. Cells were treated with VIP (10�8 M),
forskolin (10�6 M), or IBMX (10�3 M), alone or in combination, for 7
days. Data are shown for two separate experiments (A) and (B) and
each column represents the mean of three wells � SEM. *P � 0.05,
two-tail, compared with untreated cells. †P � 0.05, one-tail, compared
with untreated cells.
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bomian gland acini contain VIP,18,29 it is possible that release
of this neuropeptide could promote epithelial cell proliferation
in vivo. Such an ability, however, remains to be shown.

Another possibility is that the neurotransmitters VIP and
acetylcholine may influence the production, secretion, and/or
delivery of meibomian gland secretions to the ocular surface.
These compounds are known, for example, to stimulate epi-
thelial cell secretion by the lacrimal gland.29,45,48,53,54 If this
meibomian gland activity occurs, it would suggest that the
parasympathetic nervous system may protect against the de-
velopment of evaporative dry eye. Consistent with this hypoth-
esis is the finding that administration of the parasympathetic
inhibitor scopolamine promotes the generation of dry eye.55–59

Overall, our results indicate a potential role for the para-
sympathetic nervous system in maintaining the tear film lipid
layer and the health of the ocular surface.
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